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Abstract—Due to the low-dimensional property of clean hyper-
spectral images (HSIs), many low-rank-based methods have been
proposed to denoise HSIs. However, in an HSI, the noise intensity
in different bands is often different, and most of the existing meth-
ods do not take this fact into consideration. In this paper, a noise-
adjusted iterative low-rank matrix approximation (NAILRMA)
method is proposed for HSI denoising. Based on the low-rank
property of HSIs, the patchwise low-rank matrix approximation
(LRMA) is established. To further separate the noise from the sig-
nal subspaces, an iterative regularization framework is proposed.
Considering that the noise intensity in different bands is different,
an adaptive iteration factor selection based on the noise variance
of each HSI band is adopted. This noise-adjusted iteration strat-
egy can effectively preserve the high-SNR bands and denoise the
low-SNR bands. The randomized singular value decomposition
(RSVD) method is then utilized to solve the NAILRMA optimiza-
tion problem. A number of experiments were conducted in both
simulated and real data conditions to illustrate the performance of
the proposed NAILRMA method for HSI denoising.

Index Terms—Denoising, hyperspectral image (HSI), low-rank
matrix approximation (LRMA), noise-adjusted iteration, random-
ized singular value decomposition (RSVD).

I. INTRODUCTION

W ITH THE wealth of available spectral information,
hyperspectral imagery has drawn a lot of attention from

various application fields, which include urban planning, map-
ping, agriculture, forestry, and monitoring [1], [2]. However,
hyperspectral images (HSIs) obtained by multidetectors are
often corrupted by different types of noise, which severely
degrades the quality of the imagery and limits the precision of
the subsequent processing, including classification [3]–[5], seg-
mentation [6], unmixing [7], [8], and target detection [9], [10].
It is therefore important to reduce the noise in hyperspectral
imagery.
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To date, many different denoising methods have been pro-
posed for hyperspectral imagery. HSI data contain hundreds
of spectral channels, and each channel can be regarded as
a gray-level image. In this regard, a number of gray-level
image denoising methods, such as the nonlocal-based algo-
rithm [11], K-SVD [12], and block-matching 3-D filtering
(BM3D) [13], can be adopted to denoise the HSI data band
by band. However, this kind of processing method ignores
the correlations between different spectral bands, and often
results in a relatively low-quality result. Alternatively, the most
recent hyperspectral denoising methods focus on improving
the HSI quality by exploiting both the spatial and spectral
information. One of the most famous methods is principal com-
ponent analysis (PCA), which uses orthogonal transformation
to convert the hyperspectral imagery into a set of linearly uncor-
related variables called principal components (PCs). It assumes
that the high-dimensional hyperspectral data underlie a low-
dimensional intrinsic space, indicating that the first few PCs
contain most of the information, and the rest of the PCs are con-
sidered to be noise. Thus, the hyperspectral data are denoised
via inverse transformation of the first few PCs. However, it was
shown in [14] and [54] that the variance in HSIs does not nec-
essarily reflect real SNR, due to the unequal noise variances
found in the different bands. Furthermore, it is also possible
that some useful information will be included in the remaining
PCs. To address these problems, a number of improved methods
have been put forward, including noise-adjusted PCs (NAPCs)
transform [14], interference and NAPCs analysis (INAPCA)
[15], PCA with wavelet denoising [16], and multivariate mul-
tiresolution PCA [17]. In [18], a robust PCA (RPCA) model
was adopted to simultaneously remove Gaussian noise, impulse
noise, and stripes.

By treating the data as a multidimensional data cube, multi-
dimensional analysis methods have also been adopted for HSI
denoising. With the data modeled as a 3-D tensor in [19], multi-
dimensional Wiener filtering (MWF) was adopted to detect the
signal subspace. To reduce the nonwhite noise, Liu et al. [20]
proposed a two-stage process composed of a noise prewhiten-
ing procedure and an MWF process. To overcome the problems
of uniqueness of decomposition and the estimation of multi-
ple ranks for the Tucker3 (three-mode factor analysis) model,
Liu et al. [21] exploited a powerful multilinear algebra model
named parallel factor analysis (PARAFAC), in which the num-
ber of estimated ranks is reduced to one. By treating the data
as a 3-D cube, many other state-of-the-art denoising methods,
such as VBM3D [22] and BM4D [23], can also be used for HSI
processing.
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The partial differential equation (PDE)-based methods have
also been widely used for denoising in HSI processing. In
[24], an anisotropic diffusion model was proposed to process
HSIs, and in [25]–[27], total variation (TV)-based methods
were adopted to denoise the images. Wavelet analysis is another
powerful tool for HSI processing. On the basis that only a few
of the wavelet coefficients are large (considered as signals) and
the majority are small (considered as noise), a hybrid spatial–
spectral derivative-domain wavelet shrinkage noise reduction
(HSSNR) approach was proposed in [28]. More often, wavelets
are combined with other methods in HSI denoising, e.g., PCA
[16], multiway Wiener filtering [29], or first-order roughness
penalty (FORP) [30].

For an HSI, adjacent bands will typically exhibit strong
correlations. Additionally, nearby pixels in the HSI are also
typically highly correlated, exhibiting the low-rank structure
of hyperspectral imagery. In [18], we investigated the low-rank
property of hyperspectral imagery from the perspective of the
linear spectral mixing model. Based on the low-rank property
of hyperspectral imagery, the low-rank matrix approximation
(LRMA) method has been applied to HSI denoising [18], [31]–
[33], [52]. However, in HSIs, as the noise intensity in different
bands is different, the above low-rank-based methods may get
stuck when obtaining optimal results. To handle this problem,
in this paper, we propose a noise-adjusted iterative LRMA
(NAILRMA) method to denoise hyperspectral imagery, which
is an extension of our previous conference work [53] with third
prize in the Student Paper Contest of IGARSS 2014. The main
ideas and contributions of the proposed method are summarized
as follows.

1) Based on the low-rank property of a clean HSI,
NAILRMA denoising framework is proposed to further
remove the noise in the high-rank part. As the different
bands in HSIs have different noise variances, we update
the input image band by band, which is related to the noise
level of each band. Along with the iteration, the noise is
gradually removed and the signal is enhanced. The pro-
posed noise-adjusted iteration framework is also extended
to multiple-type mixed-noise removal.

2) Randomized singular value decomposition (RSVD) [34]
is introduced and extended to solve the HSI LRMA prob-
lem. Benefiting from probabilistic analysis, the complex-
ity of RSVD is much lower than the traditional low-rank
factorizations, including singular value decomposition
(SVD) [35] and PCA [36].

3) The proposed noise-adjusted iteration framework pro-
vides a new perspective to treat the different noise
intensities of each band for HSI denoising. The experi-
mental results confirm that the proposed method clearly
improves the denoising results, in comparison with some
of the aforementioned techniques, both in quantitative
evaluations and the visual effect.

The rest of this paper is organized as follows. After intro-
ducing LRMA denoising for HSI, the proposed noise-adjusted
iteration framework is described in Section II. An extension of
NAILRMA to mixed-noise removal is subsequently discussed
in Section III. In Section IV, both simulated experiments and
a real data experiment are described and analyzed, followed by
the conclusion in Section V.

Fig. 1. Singular values of the Casorati matrix from a 20× 20× 191 patch
extracted from the Washington DC Mall image.

II. PROPOSED NAILRMA

Observed HSI data, denoted by Y ∈ R
MN×p, can be mod-

eled as

Y = X+N (1)

where Y = [Y1,Y2, . . . ,Yp] is the Casorati matrix (a matrix
whose columns comprise vectorized bands of the HSI) of the
degraded HSI u ∈ R

M×N×p, X = [X1,X2, . . . ,Xp] is the
Casorati matrix of the clean image f ∈ R

M×N×p, and N =
[N1,N2, . . . ,Np] represents the Casorati matrix of the dense
noise N ∈ R

M×N×p, which exists in all pixels, and is assumed
to obey a Gaussian distribution in this paper. In this model,
M represents the width of the HSI data, N stands for the
height of the image, and p is the number of spectral bands.
Yi, Xi, and Ni ∈ R

MN are the vectors obtained by lexicograp-
hically ordering all the pixels of the ith bands of the observed
image, clean image, and noise, respectively. The purpose of HSI
denoising is to estimate the clean image X from the noisy image
Y. Here, we use W = diag(σ2

1 , σ
2
2 , . . . , σ

2
p) to denote the noise

covariance matrix, and σi is the noise standard deviation of
band i.

A. Patchwise LRMA Denoising

Hyperspectral data are highly structured, i.e., the HSI lies in a
low-dimensional space. From the perspective of the linear spec-
tral mixing model, each spectral signature (row of X) can be
represented by a linear combination of a small number of pure
spectral endmembers. These considerations inspire us to utilize
the LRMA method to solve the denoising problem

minX ‖Y −X‖2F , s.t rank(X) ≤ r. (2)

Consider the matrix Y of size MN × p; however, the spatial
dimensionality greatly exceeds the spectral dimensionality (i.e.,
MN � p), and Y is typically a very thin matrix. In this case,
the denoised image by LRMA may result in blurring and loss
of details. As a result, we analyze the HSI in a spatial patchwise
manner, rather than globally [18], [39].

Let Rb be a binary operator that extracts mn rows from
a matrix corresponding to an m× n spatial patch, specified
by the index b within each HSI band, and R∗

b is the inverse.
The low-rank property of each patch is shown in Fig. 1.
The patchwise LRMA (PLRMA) denoising process can be
defined as

PLRMAr(u) =
(∑

b∈Ω
R∗

bLRMAr(Rbu)
)
./
(∑

b∈Ω
R∗

bRb

)

(3)
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where LRMAr is the rank-r approximation [the solution of (2)]
of each patch, r is the upper bound of all the Casorati matrices
(which is discussed in detail in Section II-B), and Ω denotes
the set of overlapping patches that tiles the image domain.
In other words, (3) performs LRMA on a family of matrices
extracted from the HSI data u, and accumulates a weighted sum
of the results. When m = M,n = N , and |Ω| = 1, (3) reduces
to global LRMA denoising.

B. Noise-Adjusted Iteration Framework

The LRMA solution presented in (2) is more suitable for the
case where the noise N is distributed independently and iden-
tically. Unfortunately, in HSIs, the noise intensity in different
bands is different, i.e., the noise variance in different columns
of N is different. To thoroughly separate the signal from the
noise, instead of whitening the image, an iterative regularization
technique combined with LRMA is proposed here to denoise
hyperspectral imagery. Iterative regularization is widely used
in inverse problems [42], [50], and performance improvements
have been reported for both TV [43] and bilateral filtering
models [45].

The basic idea of iterative regularization is to add the out-
put denoised image of each iteration back into the input noisy
image as the input of the next iteration, i.e.,

uk+1 = (1− δ)fk + δuk (4)

where k denotes the iteration number, δ is a relaxation param-
eter, which is between [0,1], uk is the input image of the kth
iteration, and fk represents the output image after the PLRMA
process on uk. In the iterative process, if the noise is uniformly
distributed in all the bands, the performance improvement is
outstanding. However, in most HSIs, different bands have dif-
ferent noise levels. Based on this fact, we extend the idea of
iterative regularization, with the selection of δ being related to
each band, denoted as

uk+1
i = (1− δi)f

k
i + δiu

k
i , i = 1, 2, . . . , p. (5)

We also propose a noise-adjusted determination method for
δi, based on the noise variance of each band

δi = e−c(W(i,i)), i = 1, 2, . . . , p. (6)

In (5) and (6), uk
i is the ith band of the kth iteration input

image, fk
i is the ith band of the kth iteration output image,

W(i, i) is the noise variance of the ith band of the original
noisy image, and c is a decay parameter, which needs to be
predefined.

An intuitive explanation of the decision-making strategy in
(5) and (6) is as follows. As the iteration starts, only strong
signals (with large singular values) can survive the LRMA pro-
cessing and contribute to the initial noise-free HSI f̂ . However,
a partially recovered signal will be fed back to the input sig-
nal through (5) to lower the estimation of the noise. In return,
weaker signals can be identified and added to the signal esti-
mate. In addition, when the noise level is lower in the ith band
of the input image, less recovered signal of the ith band will

be added back to the input signal in the ith band, and vice
versa. This strategy can help to protect the weaker signals in
the high-SNR bands, which will be fed back to the perfor-
mance improvement of the low-SNR bands. As the iteration
progresses, it is usually observed that the estimated noise vari-
ance monotonically decreases. Meanwhile, the HSI structures
are progressively recovered until convergence. The NAILRMA
algorithm for HSI denoising is summarized as Algorithm 1.

Algorithm 1. HSI denoising via NAILRMA

1 Input: Noisy HSI u, noise variance matrix W, upper
bound rank r

2 Output: Denoised HSI f̂
3 Initialization: u0 = f0 = u, k = 0
4 While

∥∥fk+1(:)− fk(:)
∥∥
2

/∥∥fk(:)
∥∥
2
> ε and

k < iter, do
5 Update uk+1 via (5) and (6);
6 Update fk+1 = PLRMAr(u

k+1) via (3);
7 Update k = k + 1;
8 End While

C. RSVD Algorithm for LRMA

In the proposed NAILRMA, the major optimization task is to
solve (2). This problem can be efficiently solved via SVD, and
enjoys a number of optimality properties when the noise is inde-
pendently and identically distributed Gaussian [35]. Recently,
Cai et al. [38] proposed a soft-thresholding-based method
named singular value thresholding (SVT) to solve problem (2).
SVT converts (2) to a slack problem

min ‖Y −X‖2F + λ‖X‖∗ (7)

in which ‖X‖∗ denotes the sum of all the singular values
of X. Candes et al. [39] offered a principled and automated
way of selecting the regularization parameter in (7) via Stein’s
unbiased risk estimate (SURE).

Although SVT with SURE can give a naive estimation
of a clean image, it still faces some problems in practical
denoising. First, the main step of SVT (SVD computation) is
time-consuming, containing O(MNp2) floating-point opera-
tions (flops). However, in HSI applications, the datasets can
easily reach the million-pixel level, which renders this opera-
tion impossible on typical desktop computers. Secondly, this
method is effective only in the case of independently and
identically distributed Gaussian noise. Unfortunately, in most
practical cases, each band of the HSI will have different noise
levels. As a result, the input noisy image Y (vectorized noisy
HSI u) should be prewhitened: Ỹ = YW−1/2. However, this
method also changes the magnitude value of each band.

Another solution to problem (2) is to apply probabilistic
methods which give closely approximated singular vectors
and singular values [34], [40], [41], where the complexity
is at a much lower level. The proposed RSVD algorithm in
[34] explores approximate matrix factorizations by the use of
random projections, separating the process into two stages. In
the first stage, random sampling is used to obtain a reduced
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matrix whose range approximates the range of Y; in the second
stage, the reduced matrix is factorized. This process is based on
the two facts below [34].

Fact A: For a rank r matrix Y ∈ R
MN×p, the range of Y

(the subspace composed by the columns of Y) can be denoted
by Ω = YG, where G ∈ R

p×r is a Gaussian random matrix.
Fact B: If Q ∈ R

MN×r is a matrix with orthonormal
columns which span the range of Y, then

‖Y −QQ∗Y‖ ≈ min
rank(X)≤r

‖Y −X‖ . (8)

The RSVD algorithm can be summarized as Algorithm 2.

Algorithm 2. RSVD algorithm

Input: MN × p matrix Y, and desired rank r
Output: X (the rank-r approximation of Y)

1 Generate a p× r matrix G with independent mean-
zero, unit-variance Gaussian entries

2 Form the projection of Y: H = YG
3 Construct Q via QR factorization of H: H = QR,

where Q is an orthogonal basis of the range of H
4 Reconstruct the rank-r approximate matrix

X = QQ∗Y

From Algorithm 2, it can be seen that the computation of
RSVD contains O(MNp log(r) + (MN + p)r2) flops, which
is more efficient than SVD.

In Algorithm 2, if the singular values of Y decay gradually,
the accuracy of the estimates may be lost. A modified RSVD
was introduced in [34], computing H =(YY∗)qYG instead
of H = YG, since (YY∗)qYG has the same singular vectors
as YG, while its singular values decay more rapidly.

D. Adaptive Determination of the Parameters

In the real world, we cannot acquire the information about
the noise variance matrix W and the upper bound rank r of
all the patches. In this section, we introduce a noise estimation
method. Based on the estimated noise, an upper bound rank
estimation technique is also proposed.

Noise estimation is a classical problem for HSIs, and many
different techniques have been devoted to it. In this paper,
we adopt the multiple regression theory-based approach which
was also adopted in [46] and [47]. The main reason for the
good performance of multiple regression theory is the strong
correlations between neighboring spectral bands.

Let Y = [Y1,Y2, . . . ,Yp], where Yi repre-
sents the ith column of noisy image matrix Y, and
Y∂i

= [Y1,Y2, . . . ,Yi−1,Yi+1, . . . ,Yp], which is a
MN × (p− 1) matrix. We also assume that Yi is explained
by a linear combination of the remaining (p− 1) bands,
denoted as

Yi = Y∂i
βi + ξi (9)

where Y∂i
is the explanatory data matrix, βi is the regression

vector of size (p− 1)× 1, and ξi is the noise vector of size

Fig. 2. Input noise variance and the estimated noise variance of each band of
the Washington DC Mall data.

MN × 1. For each i ∈ {1, . . . , p}, the least squares estimator
of the regression vector is given by

β̂ = (YT
∂i
Y∂i

)−1YT
∂i
Yi. (10)

As a result, the noise is estimated by

ξ̂i = Yi −Y∂i
β̂. (11)

We then obtain the noise matrix N = [ξ̂1, . . . , ξ̂p] and the cor-
relation matrix by W = [ξ̂1, . . . , ξ̂p]

T [ξ̂1, . . . , ξ̂p]/(MN). To
test the efficiency of this noise estimation method, we randomly
added noise to the Washington DC Mall data (the gray values of
each HSI band are normalized to [0,1]). Fig. 2 shows the input
noise variance of all the bands and the estimated noise variance,
which proves the validity of this noise estimation method.

In the linear spectral mixing model, the rank of the input
matrix denotes the dimension of the signal subspace. Therefore,
most of the subspace estimation methods [47], [48] can be
applied to the rank estimation in global LRMA denoising. In
PLRMA processing, the dimension estimation of HSI can also
provide an upper bound for all the patch matrices, in spite of the
fact that the ranks of most of the patch matrices are lower than
the underlying dimension of the global HSI. In this part, we
provide a simple upper bound rank estimation method based on
SVD.

For the input noisy HSI data Y ∈ R
MN×p, the noise matrix

is N = [ξ̂1, . . . , ξ̂p], where ξ̂i is estimated via (11). We apply
SVD to the matrices Y and N, respectively, and obtain the sin-
gular values of Yand N, denoted by [σ1, . . . , σp], [S1, . . . , Sp].
We can now find the parameter value r, such that σr ≥ S1 and
σr+1 < S1. The upper bound of the rank is set to r, mean-
ing that the first r-dimension subspaces contain more signals.
Fig. 3 shows the first 20 singular values of noisy image Y and
noise N, with the simulated case shown in Fig. 2. The estimated
upper bound rank is 7, and the next step of the denoising is to
separate the noise from the seven-dimension signal subspaces
for each patch.

Up to now, only three parameters need to be specified in
the NAILRMA algorithm: the patch size, the step size, and the
decay parameter c in (6). The patch size is set to 20× 20× p, in
order to keep pace with the low-rank matrix recovery (LRMR)
method in [18]. The step size is set as 8× 8, i.e., we only select
patches every eight pixels along both the horizontal and vertical
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Fig. 3. First 20 singular values of noisy image Y and noise N. The input noise
variance is shown in Fig. 2.

Fig. 4. HYDICE Washington DC Mall dataset used in the simulated experi-
ment (R: 60, G: 27, and B: 17).

directions, to speed up the computation. From the most intuitive
point of view, it seems necessary to re-estimate the noise of uk

in the kth iteration, in order to determine the combination of the
input and output images. However, this is time-consuming work
and, furthermore, the noise estimation may go wrong after so
many iterations, resulting in a poor performance. On the other
hand, in each patchwise RSVD processing, the noise attenua-
tion rate of each band is constant due to the unified upper bound
rank estimation. Thus, the noise variance rate of each different
band does not change. We simply set the decay parameter c as
5, ignoring the absolute value but centralizing on the relative
value of the iteration parameter δ (δ(i) = e−c(W(i,i)), as intro-
duced in (6). We also give the reason for this decision in the
experimental part.

III. EXTENSION TO MIXED-NOISE REMOVAL

As introduced in [18], HSIs are often degraded by a mixture
of various kinds of noise in the acquisition process, which can
include Gaussian noise, impulse noise, dead lines, stripes, and
so on. In this case, the noise degradation model of the HSI can
be written as

Y = X+ S+N (12)

where S is the Casorati matrix of the sparse noise s ∈
R

M×N×p, which is the mixture of impulse noise, dead pixels
or lines, and stripes. Y, X, and N are the matrices introduced
before. The low-rank approximation denoising is then extended
to the well-known RPCA model [37], [44]

minX,S ‖Y −X− S‖2F s.t. rank(X) ≤ r, card(S) ≤ b.
(13)

Fig. 5. Pavia city center dataset used in the simulated experiment (R: 80, G:
34, and B: 9).

Here, b stands for the upper bound cardinality of the sparse
noise. The LRMR [18] algorithm, which utilizes the RPCA
model (13) to denoise the HSI patch by patch, as in (3), is
one of the start-of-the-art HSI mixed-noise removal methods.
To further improve the dense noise removal performance of the
LRMR algorithm, the proposed noise-adjusted iteration frame-
work, as presented in Algorithm 1, is also adopted, combined
with LRMR (denoted as NAILRMR), to denoise the HSI. The
only modification is to utilize the RPCA model (13) instead of
(2) in step 6) of Algorithm 1. Clearly, the NAILRMA method is
a special case of NAILRMR, with consideration of the presence
of only dense noise.

The major task is now the optimization of (13). To date, many
different methods have been proposed for the problem of (13).
In this paper, we extended the RSVD algorithm to solve this
RPCA model, which is summarized as Algorithm 3.

Algorithm 3. Extended RSVD for the RPCA model

1 Input: MN × p matrix Y, desired rank r, upper bound
cardinality b, and stopping criterion ε

2 Output: X
3 Initialize: X0 := Y,S0 := 0, k := 0, stopcriterion =

ε+ 1
4 While stopcriterion > ε do
5 k = k + 1;
6 Update Xk : the rank-r approximation of (Y − Sk−1)

via Algorithm 2
7 Update Sk := PΩ(Y −Xk), where Ω is the nonzero

subset of the first b largest entries of |Y −Xk|;
8 Update stopcriterion := ‖Y −Xk − Sk‖2F

/
‖Y‖2F

9 End While

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Both simulated and real image data experiments are under-
taken to demonstrate the effectiveness of the NAILRMA
method for HSI denoising. To thoroughly evaluate the perfor-
mance of the proposed algorithm, we select five different noise
removal methods for comparison, i.e., the SSAHTV model
[26], the VBM3D method [22], the BM4D method [23], SURE-
SVT [39], and LRMR [18]. Before the denoising processing,
the gray values of each HSI band are normalized to [0,1].
The SSAHTV method utilizes a regularization parameter λ to
balance the fidelity term and the TV regularization term, and
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TABLE I
REGULARIZATION PARAMETER SELECTION IN SSAHTV AND LRMR

TABLE II
QUANTITATIVE EVALUATION OF THE DIFFERENT DENOISING ALGORITHMS WITH WASHINGTON DC MALL IMAGE IN CASE 1

TABLE III
QUANTITATIVE EVALUATION OF THE DIFFERENT DENOISING ALGORITHMS WITH THE PAVIA CITY CENTER IMAGE IN CASE 1

Fig. 6. Denoising results in the simulated experiments in Case 2: (a) origi-
nal band 11 of the Washington DC Mall image; (b) noisy band; (c) SSAHTV;
(d) VBM3D; (e) BM4D; (f) SURE-SVT; (g) LRMR; and (h) NAILRMA.

the values are manually adjusted in each experiment. For the
VBM3D method, the noise variation is estimated via the tech-
nique introduced in Section II-D. BM4D is a parameter-free
method, and for SURE-SVT, the patch size, step size, and noise
variation estimation method are the same as NAILRMA. The
upper bound rank r is also set the same in LRMR and the
proposed method.

Fig. 7. Magnified results of Fig. 6: (a) original band 11 of the Washington DC
Mall image; (b) noisy band; (c) SSAHTV; (d) VBM3D; (e) BM4D; (f) SURE-
SVT; (g) LRMR; and (h) NAILRMA.

A. Simulated Data Experiments for Dense Noise Removal

Two HSI datasets, the Washington DC Mall dataset
and the Pavia city center dataset, are used in the simu-
lated experiments. The Washington DC Mall dataset (available:
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.
html) was collected by the Hyperspectral Digital Imagery
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Fig. 8. Denoising results in the simulated experiments in Case 2: (a) origi-
nal band 59 of the Pavia city center image; (b) noisy band; (c) SSAHTV;
(d) VBM3D; (e) BM4D; (f) SURE-SVT; (g) LRMR; and (h) NAILRMA.

Collection Experiment (HYDICE), and the whole image
contains 1208× 307 pixels and 191 spectral bands. In the
experiments, only a subimage of size 256× 256× 191 is used,
which is presented in Fig. 4. The Pavia city center dataset
(http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes) was collected by the Reflective Optics System
Imaging Spectrometer (ROSIS-03). As some spectral bands
of the Pavia city center dataset are heavily contaminated by
noise, they cannot be used as the reference for denoising.
Therefore, the first 22 bands (contain all the noisy bands) of
this data are removed, and the size of subimage is selected as
200× 200× 80, which is presented in Fig. 5. In the simulated
experiments, the peak signal-to-noise ratio (PSNR) index and
the structural similarity index (SSIM) [49] are adopted to give
a quantitative assessment of the results of the simulated image
experiments. For the HSI, we computed the PSNR and SSIM
values between each noise-free band and denoised band, and
then averaged them. These metrics are denoted as MPSNR
(mean PSNR) and MSSIM (mean SSIM index).

For the simulated process, we first add noise as in the
following two cases.

Case 1: Zero-mean Gaussian noise is added to all the bands of
the Washington DC Mall and Pavia city center data. The noise
variance values are 0.02, 0.04, 0.06, 0.08, and 0.1, respectively.

Case 2: Different variance zero-mean Gaussian noise is
added to each band of the two HSI datasets. The variance val-
ues are randomly selected from 0 to 0.1, and the mean variance
values are 0.053 and 0.051, respectively.

The selection of the regularization parameters λ of the
SSAHTV method and r (r is estimated via the method pre-
sented in Section II-D) of the LRMR method, in both Cases 1
and 2, are shown in Table I. The denoised results of the different
algorithms for the Washington DC Mall and Pavia city center
images in Case 1 are presented in Tables II and III, respectively.
The best results for each quality index are labeled in bold, and
the second-best results for each quality index are underlined.
From Tables II and III, it can be seen that the proposed method
provides the highest values in both MPSNR and MSSIM, con-
firming the advantage of the proposed method over the other
methods.

Fig. 9. Magnified results of Fig. 8: (a) original band 59 of the Pavia city center
image; (b) noisy band; (c) SSAHTV; (d) VBM3D; (e) BM4D; (f) SURE-SVT;
(g) LRMR; and (h) NAILRMA.

For Case 2, some typical bands of the HSI before and after
denoising are presented to give the visual effect. Figs. 6 and
8 show band 11 of the Washington DC Mall image and band
59 of the Pavia city center image, before and after denoising,
which are contaminated by Gaussian noise, with noise vari-
ance values of 0.088 and 0.092, respectively. Figs. 7 and 9
present magnified parts of the results in Figs. 6 and 8, respec-
tively. By comparing the denoising results of the five methods,
it can be clearly seen that the proposed method performs the
best and effectively suppresses the Gaussian noise. As dis-
played in Figs. 6–9, we can also see that SSAHTV fails to
restore the image and most of the details are lost. In fact, the
SSAHTV method is more suitable for low-level noise removal.
As the noise intensity grows, the performance of SSAHTV
drops. VBM3D and BM4D can acquire relatively better results,
but artifacts are introduced into the denoised results. SURE-
SVT cannot effectively remove noise from the image. LRMR
can obtain comparable results to NAILRMA, but the removal
of Gaussian noise is not complete.

Table IV presents the MPSNR and MSSIM values of all the
denoising methods for both datasets in Case 2, in which the
proposed NAILRMA obtains the best denoising performance.
From Tables II to IV, it is clear that the proposed method
is more competitive in Case 2 (in which the different bands
have different noise variances), because of the introduction of
the adaptive iterative regularization. Figs. 10 and 11 show the
PSNR and SSIM values of each band of the Washington DC
Mall and Pavia city center images in the Case 2 experiments.
The MPSNR and MSSIM values are higher than those of the
other five methods in both experimental datasets, indicating that
the NAILRMA method outperforms the other methods in HSI
noise removal.

To further compare the performances of all the denoising
algorithms, we calculated the mean spectral angle distance
(MSAD) of all the spectral signatures between the noise-free
and the denoised HSIs. The degree of MSAD is defined as

MSAD =
1

MN

MN∑
i=1

180

π
× arccos

(Xi)
T · (X̂i)

||Xi|| · ||X̂i|| (14)
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TABLE IV
QUANTITATIVE EVALUATION OF THE DIFFERENT DENOISING ALGORITHMS IN CASE II

Fig. 10. PSNR and SSIM values of each band of the experimental results of
the Washington DC Mall image in Case 2: (a) PSNR values and (b) SSIM
values.

Fig. 11. PSNR and SSIM values of each band of the experimental results of
the Pavia city center image in Case 2: (a) PSNR values and (b) SSIM values.

where Xi and X̂i are the ith spectral signatures of noise-free
and the denoised HSIs, respectively. Table V gives the MSAD
values in degree of all noisy and denoised HSIs. Here, it can
be clearly seen that the proposed NAILRMA method produces
better spectral signatures than the other denoising methods in
both HSIs.

B. Simulated Data Experiment for Mixed-Noise Removal

For this simulated process, we add noise as follows.
Case 3: Dense Gaussian noise is first added to the

Washington DC Mall data, as in Case 2. Impulse noise of 10%
is then added to all the bands. Finally, dead lines are simulated
for the four bands from band 60 to band 63.

In this case, we compare the denoised results of the proposed
NAILRMR with LRMR. For a fair comparison, the upper bound
rank r is set to 7, the cardinality b is set to 6000, and the step
size is set as 8× 8 in both the NAILRMR and LRMR methods.

Fig. 12 shows the false-color composite of the Washington
DC Mall image in Case 3, before and after denoising, and
Fig. 13 presents magnified results from Fig. 12. It is clear
that both LRMR and NAILRMR can effectively remove sparse
noise, and NAILRMR performs better in the dense noise
removal. Fig. 14 shows the PSNR and SSIM values of each

band of the Washington DC Mall image after LRMR and
NAILRMR denoising, which indicates the good performance of
the noise-adjusted iteration framework in dense noise removal.

C. Real Data Experiment

The Indian Pines dataset was acquired by the NASA AVIRIS
(airborne visible/infrared imaging spectrometer) instrument
over the Indian Pines test site in Northwestern Indiana in
1992. The data size is 145× 145 pixels and 220 bands. The
dataset was provided by Professor David Landgrebe and can be
downloaded from https://engineering.purdue.edu/~biehl/Multi
Spec/hyperspectral.html. Fig. 15 shows the color image by
combining bands 3, 147, and 219, and the 10 land-cover classes
used in the classification. In this real data experiment, the regu-
larization parameter λ of the SSAHTV method is set to 3, and
the noise variance of each band and the upper bound rank r are
estimated via the methods introduced in Section II-D.

Fig. 16 presents the false-color image composed of bands 1,
103, and 220, before and after denoising, and Fig. 17 presents
magnified results from Fig. 16. The Indian Pines image is
mainly corrupted by dense noise, and sparse noise is also
attached to some bands of the data. Here, it can be clearly
observed that NAILRMR achieves the best results, effectively
suppressing the noise and simultaneously keeping the local
details of the original image. The result of NAILRMA is a little
worse than NAILRMR. This is mainly because the NAILRMA
method fails to remove the sparse noise which exists in some
bands of the original Indian Pines data. LRMR can more or
less obtain a comparable result to NAILRMA, but some dense
noise still exists in the denoised result. For SSAHTV, the edges
are enhanced, but the result is over-smooth and some details are
lost. The VBM3D and BM4D methods fail to restore the image
and introduce some artifacts. SURE-SVT can remove the noise
and preserve the details, but not completely.

To further verify the effectiveness of the proposed denoising
method, the classification results of the HSI before and after
denoising are given for comparison purposes. Support vector
machine (SVM) [51], with cross validation (CV) for select-
ing the tuning parameters, is utilized to conduct the supervised
classification task for the HSI. The main idea of SVM is to
project the data to a higher-dimensional space and to use a
hyperplane to acquire a better separation. The classification
process is repeated 10 times (training samples are chosen ran-
domly 10 times), and the mean overall accuracy (OA) and
kappa coefficient are chosen as the evaluation criteria.

Fig. 18 shows the classification results by the use of SVM
on the whole Indian Pines dataset. The classification accuracy
evaluation results by the use of the OA and kappa coeffi-
cient, along with the classification accuracies for each class,
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TABLE V
MSAD VALUES OF THE NOISY AND DENOISED HSI DATA IN CASE II

Fig. 12. Denoising results of the Washington DC Mall image in Case 3:
(a) original false-color image (R: 180, G: 61, and B: 9); (b) noisy band;
(c) LRMR; and (d) NAILRMR.

Fig. 13. Magnified results of Fig. 12: (a) original false-color image (R: 180, G:
61, and B: 9); (b) noisy band; (c) LRMR; and (d) NAILRMR.

Fig. 14. PSNR and SSIM values of each band of the experimental results in
Case 3: (a) PSNR values and (b) SSIM values.

Fig. 15. AVIRIS Indian Pines dataset used in the real data experiment. (a) The
HSI 3-D cube and (b) the training and test samples used in the classification.

are presented in Table VI. Here, it can be clearly seen that the
classification result has been significantly improved after the
denoising process. In the original noisy classification result,
the classification appears fragmentary, because of the effect
of the strong noise existing in most of the bands. However,
in the denoised image classification results, the fragmentary

Fig. 16. Denoising results in the real data experiment: (a) original false-color
image (R: 1, G: 103, and B: 220); (b) SSAHTV; (c) VBM3D; (d) BM4D;
(e) SURE-SVT; (f) LRMR; (g) NAILRMA; and (h) NAILRMR.

Fig. 17. Magnified results of Fig. 16: (a) original false-color image (R: 1, G:
103, and B: 220); (b) SSAHTV; (c) VBM3D; (d) BM4D; (e) SURE-SVT;
(f) LRMR; (g) NAILRMA; and (h) NAILRMR.

Fig. 18. Classification results of the Indian Pines data before and after denois-
ing: (a) classification result of the original image; (b) classification result after
SSAHTV denoising; (c) VBM3D; (d) BM4D; (e) SURE-SVT; (f) LRMR;
(g) NAILRMA; and (h) NAILRMR.
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TABLE VI
CLASSIFICATION ACCURACY EVALUATION RESULTS OF THE ORIGINAL AND DENOISED INDIAN PINES DATA

Fig. 19. MPSNR and MSSIM values of each step in the first 100 iterations
in the simulated data experiment in Case 2 for the Washington DC Mall data:
(a) MPSNR values of each step and (b) MSSIM values.

phenomenon is greatly reduced. Among all the classification
results of the seven denoising methods, NAILRMR achieves
the highest OA and kappa coefficient values, indicating the best
performance in the noise removal. For SSAHTV, reducing the
value of parameter λ can improve the classification result, but
this is accompanied with a smoother denoised image, and more
details are lost.

D. Discussions

As the major concern of this paper is centralized on the
performance improvement of dense noise removal, we only
discuss and analysis the NAILRMA method here. However,
NAILRMR has the same property as NAILRMA, except for
the sparse noise removal.

1) Convergence of NAILRMA: To verify the convergence
of the iteration, we give the MPSNR and MSSIM values of
each iterative step in the first 100 iterations in the simulated
experiment in Case 2 for the Washington DC Mall data in
Fig. 19. From Fig. 19, we can see that as the iteration pro-
gresses, the MPSNR and MSSIM values of the output image
monotonically increase, indicating the performance improve-
ment of NAILRMA. In Fig. 19, we can also see that the
MPSNR and MSSIM values increase rapidly in the first few
iterations, and then grow slowly in the subsequent iterations.
Therefore, in all of the simulated and real data experiments,
the stopping criterion is set as ε = 1e− 3, and the maximum
iteration number is 50.

Fig. 20. Sensitivity analysis of parameter c (c from 1 to 20): (a) change in the
MPSNR value and (b) change in the MSSIM value.

Fig. 21. Comparison of the noise-adjusted update mode (5) and update mode
(4) with δ varied between 0.2, 0.4, 0.6, and 0.8: (a) MPSNR values of each
iteration in Case 2 for the Washington DC Mall data and (b) MSSIM values.

2) Sensitivity Analysis of Parameter c: In (5) and (6), the
selection of the iteration factor δ is related to the noise vari-
ance of each band and the decay parameter c. To show the
effect of parameter c on the final denoising performance, we
undertake a sensitivity analysis in the simulated experimen-
tal results in Case 2 for the Washington DC Mall data, as
presented in Fig. 20. To confirm the superiority of the noise-
adjusted iterative update method, as introduced in (5), we also
undertake a comparison of NAILRMA with (5) and (4) as the
update mode.

Fig. 20 presents the MPSNR and MSSIM values with the
change of parameter c from 1 to 20. When c falls within
the range of 2–10, the NAILRMA method can acquire stable
MPSNR and MSSIM values. Therefore, we set c as 5 in all
the experiments. Fig. 21 gives the output MPSNR and MSSIM
values of each iteration in NAILRMA with the two different
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update modes, as in (5) and (4). For update mode (4), the iter-
ation factor δ is the same for all the HSI bands, and we choose
δ as 0.2, 0.4, 0.6, and 0.8 for comparison. From Fig. 21, we
can see that the gaps in the output MPSNR and MSSIM val-
ues are small after 50 iterations when δ is varied between 0.2,
0.4, 0.6, and 0.8. Overall, it can be clearly observed that the
noise-adjusted iteration update mode has a clear advantage over
update mode (4).

V. CONCLUSION

In this paper, we have proposed an NAILRMA method for
HSI denoising. Patchwise randomized singular value decom-
position is first applied to each Casorati matrix (obtained by
lexicographically ordering the 3-D patch into a 2-D matrix)
to denoise the HSI. An iterative regularization technique is
subsequently adopted, based on the patchwise LRMA, to fur-
ther separate the signal and noise. As for the HSI, different
bands have different noise levels. A noise-adjusted update mode
is then proposed to update the input image of the iteration.
That is, in each iteration step, the input image is composed
of the previous iteration of the input and output images, and
the input image of the previous iteration accounts for the main
part in the low-noise case, and vice versa. As the iteration
progresses, the noise in each band is suppressed. Meanwhile,
the image structures are progressively recovered until conver-
gence. This noise-adjusted iteration framework is also extended
to mixed-noise removal. Simulated and real HSI experiment
results confirm the effectiveness of the proposed method.
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